8 research outputs found

    Dendritic vulnerability in neurodegenerative disease: insights from analyses of cortical pyramidal neurons in transgenic mouse models

    Get PDF
    Abstract In neurodegenerative disorders, such as Alzheimer's disease, neuronal dendrites and dendritic spines undergo significant pathological changes. Because of the determinant role of these highly dynamic structures in signaling by individual neurons and ultimately in the functionality of neuronal networks that mediate cognitive functions, a detailed understanding of these changes is of paramount importance. Mutant murine models, such as the Tg2576 APP mutant mouse and the rTg4510 tau mutant mouse have been developed to provide insight into pathogenesis involving the abnormal production and aggregation of amyloid and tau proteins, because of the key role that these proteins play in neurodegenerative disease. This review showcases the multidimensional approach taken by our collaborative group to increase understanding of pathological mechanisms in neurodegenerative disease using these mouse models. This approach includes analyses of empirical 3D morphological and electrophysiological data acquired from frontal cortical pyramidal neurons using confocal laser scanning microscopy and whole-cell patchclamp recording techniques, combined with computational modeling methodologies. These collaborative studies are designed to shed insight on the repercussions of dystrophic changes in neocortical neurons, define the cellular phenotype of differential neuronal vulnerability in relevant models of neurodegenerative disease, and provide a basis upon which to develop meaningful therapeutic strategies aimed at preventing, reversing, or compensating for neurodegenerative changes in dementia

    The intersection of amyloid beta and tau in glutamatergic synaptic dysfunction and collapse in Alzheimer's disease

    No full text
    The synaptic connections that form between neurons during development remain plastic and able to adapt throughout the lifespan, enabling learning and memory. However, during aging and in particular in neurodegenerative diseases, synapses become dysfunctional and degenerate, contributing to dementia. In the case of Alzheimer’s disease (AD), synapse loss is the strongest pathological correlate of cognitive decline, indicating that synaptic degeneration plays a central role in dementia. Over the past decade, strong evidence has emerged that oligomeric forms of amyloid beta, the protein that accumulates in senile plaques in the AD brain, contribute to degeneration of synaptic structure and function. More recent data indicate that pathological forms of tau protein, which accumulate in neurofibrillary tangles in the AD brain, also cause synaptic dysfunction and loss. In this review, we will present the case that soluble forms of both amyloid beta and tau protein act at the synapse to cause neural network dysfunction, and further that these two pathological proteins may act in concert to cause synaptic pathology. These data may have wide-ranging implications for the targeting of soluble pathological proteins in neurodegenerative diseases to prevent or reverse cognitive decline
    corecore